量子計(jì)算和人工智能都是變革性技術(shù),人工智能很可能需要量子計(jì)算才能取得重大進(jìn)展。人工智能雖然用經(jīng)典計(jì)算機(jī)產(chǎn)生功能性應(yīng)用,但受限于經(jīng)典計(jì)算機(jī)的計(jì)算能力。量子計(jì)算可以為人工智能提供計(jì)算提升,使其能夠解決更復(fù)雜的問題和AGI(通用人工智能)。
什么是量子人工智能?量子人工智能是使用量子計(jì)算來計(jì)算機(jī)器學(xué)習(xí)算法。得益于量子計(jì)算的計(jì)算優(yōu)勢,量子人工智能可以幫助實(shí)現(xiàn)經(jīng)典計(jì)算機(jī)無法實(shí)現(xiàn)的結(jié)果。
什么是量子計(jì)算?量子力學(xué)是一種基于不同于日常生活中觀察到的原理的通用模型。用量子計(jì)算來處理數(shù)據(jù),需要建立數(shù)據(jù)的量子模型?;旌狭孔咏?jīng)典模型對(duì)于量子計(jì)算的糾錯(cuò)和量子計(jì)算機(jī)的正確運(yùn)行也是必要的。
量子數(shù)據(jù):量子數(shù)據(jù)可以被視為包含在用于計(jì)算機(jī)化的量子比特中的數(shù)據(jù)包。然而,觀察和存儲(chǔ)量子數(shù)據(jù)具有挑戰(zhàn)性,因?yàn)榀B加和糾纏等特性使其有價(jià)值。此外,量子數(shù)據(jù)是嘈雜的,需要在正確分析和解釋這些數(shù)據(jù)的階段應(yīng)用機(jī)器學(xué)習(xí)。混合量子經(jīng)典模型:僅在使用量子處理器生成量子數(shù)據(jù)時(shí),極有可能獲得無意義的數(shù)據(jù)。因此,在傳統(tǒng)計(jì)算機(jī)中常用的CPU和GPU等快速數(shù)據(jù)處理機(jī)制的驅(qū)動(dòng)下,出現(xiàn)了一種混合模型。量子算法:算法是導(dǎo)致問題解決的一系列步驟。為了在設(shè)備上執(zhí)行這些步驟,必須使用設(shè)備設(shè)計(jì)的特定指令集。與經(jīng)典計(jì)算相比,量子計(jì)算引入了不同的指令集,這些指令集基于完全不同的執(zhí)行理念。量子算法的目的是利用疊加和糾纏等量子效應(yīng)來更快地獲得解決方案。它為什么如此重要?盡管人工智能在過去十年中取得了長足的進(jìn)步,但尚未克服技術(shù)限制。借助量子計(jì)算的獨(dú)特特性,可以消除實(shí)現(xiàn) AGI(通用人工智能)的障礙。量子計(jì)算可用于機(jī)器學(xué)習(xí)模型的快速訓(xùn)練和創(chuàng)建優(yōu)化算法。量子計(jì)算提供的優(yōu)化和穩(wěn)定的人工智能可以在短時(shí)間內(nèi)完成多年的分析,并引領(lǐng)技術(shù)進(jìn)步。神經(jīng)形態(tài)認(rèn)知模型、自適應(yīng)機(jī)器學(xué)習(xí)或不確定性推理是當(dāng)今人工智能面臨的一些基本挑戰(zhàn)。量子人工智能是下一代人工智能最有可能的解決方案之一。
量子人工智能是如何工作的?最近,谷歌與滑鐵盧大學(xué)、X和大眾汽車公司合作推出了TensorFlowQuantum(TFQ):一個(gè)用于量子機(jī)器學(xué)習(xí)的開源庫。TFQ 的目的是提供必要的工具來控制和模擬自然或人工量子系統(tǒng)。TFQ 是一套結(jié)合了量子建模和機(jī)器學(xué)習(xí)技術(shù)的工具的一個(gè)例子。
評(píng)估成本函數(shù)、梯度和更新參數(shù)的其他步驟是深度學(xué)習(xí)的經(jīng)典步驟。這些步驟可確保為無監(jiān)督任務(wù)創(chuàng)建有效模型。
在人工智能中應(yīng)用量子計(jì)算的可能性有哪些?研究人員對(duì)量子人工智能的近期現(xiàn)實(shí)目標(biāo)是創(chuàng)建性能優(yōu)于經(jīng)典算法的量子算法并將其付諸實(shí)踐。
用于學(xué)習(xí)的量子算法:開發(fā)用于經(jīng)典學(xué)習(xí)模型的量子泛化的量子算法。它可以在深度學(xué)習(xí)訓(xùn)練過程中提供可能的加速或其他改進(jìn)。量子計(jì)算對(duì)經(jīng)典機(jī)器學(xué)習(xí)的貢獻(xiàn)可以通過快速呈現(xiàn)人工神經(jīng)網(wǎng)絡(luò)權(quán)重的最優(yōu)解集來實(shí)現(xiàn)。決策問題的量子算法:經(jīng)典決策問題是根據(jù)決策樹制定的。達(dá)到解決方案集的一種方法是從某些點(diǎn)創(chuàng)建分支。但是,當(dāng)每個(gè)問題都過于復(fù)雜而無法通過不斷地一分為二來解決時(shí),這種方法的效率就會(huì)降低?;诠茴D時(shí)間演化的量子算法可以比隨機(jī)游走更快地解決由多個(gè)決策樹表示的問題。量子搜索:大多數(shù)搜索算法都是為經(jīng)典計(jì)算而設(shè)計(jì)的。經(jīng)典計(jì)算在搜索問題上的表現(xiàn)優(yōu)于人類。另一方面,Lov Grover 提供了他的 Grover 算法,并表示量子計(jì)算機(jī)可以比經(jīng)典計(jì)算機(jī)更快地解決這個(gè)問題。由量子計(jì)算驅(qū)動(dòng)的人工智能有望用于加密等近期應(yīng)用。量子博弈論:經(jīng)典博弈論是一種在人工智能應(yīng)用中廣泛使用的建模過程。該理論向量子場的延伸就是量子博弈論。它可以成為克服量子通信和量子人工智能實(shí)施中的關(guān)鍵問題的有前途的工具。量子人工智能的關(guān)鍵里程碑是什么?盡管量子 AI 是一項(xiàng)不成熟的技術(shù),但量子計(jì)算方面的改進(jìn)增加了量子 AI 的潛力。然而,量子人工智能產(chǎn)業(yè)需要關(guān)鍵的里程碑才能成為更成熟的技術(shù)。這些里程碑可以概括為:
不易出錯(cuò)且功能更強(qiáng)大的量子計(jì)算系統(tǒng)廣泛采用的開源建模和訓(xùn)練框架龐大而熟練的開發(fā)者生態(tài)系統(tǒng)令人信服的人工智能應(yīng)用程序,其量子計(jì)算優(yōu)于經(jīng)典計(jì)算這些關(guān)鍵步驟將使量子人工智能能夠進(jìn)一步發(fā)展。(by Cem Dilmegani)
推薦閱讀:量子計(jì)算比人工智能更危險(xiǎn)?| 專家視點(diǎn)
- 800G相干技術(shù)概述
- 生成式人工智能對(duì)數(shù)據(jù)中心意味著什么
- PON光模塊演進(jìn)趨勢:邁向更快、更智能的光纖接入時(shí)代
- 華為汪濤:AI全面重構(gòu)超寬帶網(wǎng)絡(luò),激發(fā)商業(yè)新增長
- 全球首屆新通話×AI挑戰(zhàn)賽揭榜,華為攜產(chǎn)業(yè)伙伴獲得四項(xiàng)大獎(jiǎng)
- 谷歌推出AI模式語音交互對(duì)話功能;一季度全球智能掃地機(jī)器人市場出貨量同比增長11.9%——2025年06月20日
- 中國聯(lián)通攜手華為打造5G-A x AI時(shí)代融智新品,正式開啟AI to X新時(shí)代
- 華為陳浩:激發(fā)體驗(yàn)經(jīng)營心動(dòng)時(shí)刻,加速5G-A商業(yè)成功
- 中國電信聯(lián)合華為發(fā)布“智聚大上行”創(chuàng)新技術(shù),賦能5G-A產(chǎn)業(yè)煥新升級(jí)
- 2025年物聯(lián)網(wǎng)將如何加速物流并降低成本
免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請(qǐng)進(jìn)一步核實(shí),并對(duì)任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對(duì)有關(guān)資料所引致的錯(cuò)誤、不確或遺漏,概不負(fù)任何法律責(zé)任。任何單位或個(gè)人認(rèn)為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識(shí)產(chǎn)權(quán)或存在不實(shí)內(nèi)容時(shí),應(yīng)及時(shí)向本網(wǎng)站提出書面權(quán)利通知或不實(shí)情況說明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實(shí)情況證明。本網(wǎng)站在收到上述法律文件后,將會(huì)依法盡快聯(lián)系相關(guān)文章源頭核實(shí),溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。